Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy

نویسندگان

  • Sasikumar Rajoo
  • Pascal Vallotton
  • Evgeny Onischenko
  • Karsten Weis
چکیده

The nuclear pore complex (NPC) is an 8-fold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ~30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure, however, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed Nuclear Rim Intensity Measurement or NuRIM, to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188 that their altered expression leads to significant changes in Nup stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines

To understand the structure and function of large molecular machines, accurate knowledge of their stoichiometry is essential. In this study, we developed an integrated targeted proteomics and super-resolution microscopy approach to determine the absolute stoichiometry of the human nuclear pore complex (NPC), possibly the largest eukaryotic protein complex. We show that the human NPC has a previ...

متن کامل

Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the i...

متن کامل

The Ran GTPase cycle is required for yeast nuclear pore complex assembly

Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activa...

متن کامل

Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.

Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscop...

متن کامل

The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm.

Compositional analysis of nuclear pore complexes (NPCs) is nearing completion, and efforts are now focused on understanding how these protein machines work. Recent analysis of soluble transport factor interactions with NPC proteins reveals distinct and overlapping pathways for movement between the nucleus and cytoplasm. New fluorescence- and microscopy-based strategies have been used to monitor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017